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Allltract-A new vector technique is presented for calculations appropriate to multiaxial testing configura­
tions. An especially important feature of the technique is the explicit inclusion of material rotations
associated with simple shear. The technique is applied to the prediction of axial extension rates ac·
companying torsional deformation . The predictions of two types of inelastic constitutive theories are
compared.

It is shown that analysis of axial extension generated by torsion is a very sensitive test of the multiaxial
form of inelastic constitutive equations.

INTRODUCTION

The simplest and most usual method for investigation of the inelastic behavior of materials is
that of the uniaxial tension test. Of course this method subjects the test specimen only to a
single type of loading. For isotropic materials the inelastic strain rate in this test is also
congruent to the deviator of the loading stress. The critical investigation of consitutive relations
for inelastic deformation requires testing under a broader range of loading stresses than is
provided in the uniaxial configuration.

The most common method for introducing additional stress states is the testing of thin
walled cylinders under combined tension and torsion. This technique is referred to as biaxial
testing since the form of the stress tensor is determined by two independent loading
parameters. Although the quantity of biaxial testing is still very much smaller than that done
under uniaxial conditions, the number of biaxial testing programs has increased in recent times.
A review of much of the significant work of this type has been published recently by Hecker[l].

. There is an important aspect of the torsion deformation mode in tension-torsion testing that
has been consistently ignored in almost all of such testing programs. It is that the torsion
deformation is not one of pure shear strain but rather is that of simple shear which includes
material rotation. This fact complicates the interpretation of tension-torsion data, and it can
lead to profound errors in the identification of the parameters in inelastic constitutive equations.
It is necessary, therefore, that a reasonably general procedure be available to account for the
effects of material rotations if reliable conclusions are to be drawn from tension-torsion test
data.

The purpose of the present paper is to develop such a procedure. It will be seen in what
follows that the detailed application of the procedure to test data depends to some extent on the
character of the constitutive equations themselves. Thus it is not possible to provide an
automatic method of analysis that applies in the same way to all classes of constitutive
equations. For this reason we shall develop the theory in parts. Some of the parts are general,
but some parts of the theory can be applied only with explicit attention to the detailed form of
the operative constitutive equations.

We shall be concerned here only with the inelastic strain components and with incremental
flow relations. Most of the considerations have to do with real time flow rate relations, and time
independent representations will appear only as limiting forms of flow rate theories.

An additional mode of testing that introduces multiaxiality of loading is that of internal
pressure in the testing of thin-walled cylinders. Our general formulation will include this
additional degree of freedom in the admissable loading, but the special cases considered will be
restricted to the tension-torsion configuration.

In the exposition that follows we shall employ a novel mathematical representation for the
variables of multiaxial testing that replaces the somewhat cumbersome tensorial description by
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a simpler vectorial one. Since this technique is novel, we shall first develop it in some detail. We
shall then apply the method to the representation of the effects of material rotations on the
appropriate vectors. Finally, we shall apply the resultant equations to the prediction of
tension-torsion behavior for two types of constitutive equations.

We shall follow, in our treatment, the customary approximation that the cylindrical tube has
walls sufticiently thin that the tube may be regarded as locally flat. Thus the specimen is
equivalent to a thin planar sheet. We choose coordinate axes XI and Xz in the plane such that the
xl-direction is axial and the xT'direction is circumferential. The x3-direction is then taken
normal to the plane.

We assume explicitly in our treatment that the local geometric rotation rate that is derived
from the anti-symmetric components of the velocity gradient is a material rotation rate with
respect to any element of material anisotropy. Thus we assume that any local rotation rate
affects the material in the same way as would a local rigid rotation. There is no clear proof
available that this condition holds strictly. We intend the treatment to apply to polycrystalline
materials, and the assumption appears to be reasonable for such materials.

THE 3-D DEVIATORIC VECTOR SPACE

For the treatment of material strain under conditions appropriate for tension-torsion testing
of thin-walled cylinders it is convenient to employ a system of three linearly independent
tensors that can be used as a basis set for a 3-dimensional vector space. In such a represen­
tation the deviatoric stress tensors and the non-elastic strain rate tensors can be treated as
vectors. Altho. the tension-torsioD loading system has omy two independent components,
the constitutive equations may require a third component and the strain rate may not
necessarily be bivariate. Furthermore, with the third vector component, it is possible to include
in the representation the additional loading component appropriate to internal pressure loads.
Because of these cir<:umstances we shall present the vector formulation for a deviatoric,
symmetric tensor with the symmetry restrictions appropriate to our problems.

We wish to represent a symmetric, deviatoric tensor A of the following form:

(1)

Since A is deviatoric we may choose any two of the diagonal components as independent. We
elect to treat Au and A22 as the independent components. Then

Now we represent A as the sum of three terms.

(2)

1 (1 0 0) (0 1
A=i(Att -A221 0 -1 0 +Alz 1 0

o 0 0 0 0

0) 1 (100)o +i(Au +A221 0 I 0 .
o 0 0 -2

(3)

It is easily verified that eqn (3) is the same as eqn (I) with the condition of eqn (2). We now
write this as

where we define

(4)

~ ~).
o -2

(5)
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The fs are manifestly deviatoric and linearly independent. We next define a scalar product for
these vectors as the trace of the matrix product. That product is an invariant. In detail

and it is easily verified that fi . fj =0 if i# j. When i =j, we have

el . el =f2 . ~2 =2,

f3' f3 =6.

We form from these an orthonormal set ii as follows:

and for these unit vectors,

Now for any tensor A we define its vector representation ~ as

and

1
AI-Vi(A11-AD>,

A2 ·Y(2)A12,

A3 • ~(~) (All +AD>.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(3)

(14)

In terms of the components Ai. we may readily express the second invariant A of A defined as

A. +Y(Tr{AA}).

In terms of the scalar product this becomes

A=+Y(~'~)

=+Y(AI
2 +Al+ A3

2
).

Thus A is the magnitude of the vector ~.

OS)

(16)

(17)

Material rotations and the i-space
We shall be concerned with material tensors A that will share the rotations that material

elements may undergo. It is sufticient to restrict our considerations to rotations in the
XI> xrplane about the x3-axis. We shall hold the basis set {~} fixed and seek the effect of space
rotations w on the components Ai' First, since the spatial xraxis is undisturbed, it is evident
that A3 will remain unchanged. The rotations then concern only AI and A2• As is illustrated in
the Fig. I, the small material rotation dw induces the small vector rotation 2dw in the
il> ~TPlane. For small rotations this gives the component transformations

d-A1=-2A,dw r'

d-A.=+2A\dw' ,

(18)

(9)
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p
x,

pi

2dw

and

o ~ t
Fie. l. Representation of the rotation of a material vector ~ in the i.. irplane that is induced by the spatial

material rotation dtll in the x.. xrplane.

(20)

Then for the vector ~.

(21)

For the case of torsion of thin walled cylinders. the material deformation is that of simple shear
which involves both symmetric shear and rotation. The xrCoordinate is taken to be the
circumferential one and the material velocities VI and V2 are independent of .12. Then if 1 is the
simple shearing rate

V2 = 1.11 (22)

V2.1 =1 (23)

EI2 =~(V2.1 +VI.2) (24)

I .
(25)=-,2

W=! (V2.1 - VI.21 (26)

1 .
(27)=21 =E12'

The positive sense of wis rotation of xI into .12'

Now any material tensor A that has a time rate of change (dA/dt)mat in the material
reference frame will have a time rate of change A. in the fixed reference frame (laboratory
frame) siven by

A= (dA/dt)mat +WdA/dfll. (28)

APPLICATION TO CONSTITUTIVE MODELS

We wish to find the predictions of two classes of constitutive equations for the resultant
deformation under multiaxial test conditions that include torsion. The effect of the rotations will
appear in these models from the material anisotropy induced by the deformation. This
anisotropy is represented in both models by an internal stress (or stored strain) which gives an
orientation to the material elements. SinCe that internal variable is tensorial. its laboratory frame
time rate of change will follow eqn (28). The resultant effect however is somewhat different for
the two constitutive models and so we must treat each one separately. We shall first carry out
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the calculation for the internal state variable theory proposed by Hart [2). This theory has
already been applied to this problem by VanArsdale et al.[3). We shan restate that problem in
the vector representation developed above and in a more general context than that of Ref. [3).
We shan then apply the same method to the kinematic hardening theory.

HART'S CONSTITUTIVE EQUATIONS

These constitutive equations are relations among the applied stress deviator a, the observ­
able non-elastic strain rate E, a tensorial internal state variable a, and a scalar state variable 0'•.
In describing the theory it is convenient to employ three additional auxiliary variables ci, a o, and
af' The relationships among these are shown in the rheological diagram in Fig. 2. The intent of
the diagram is to show an relationships and constraints as tensorial.

The variable ci is a strain rate that represents the funy unrecoverable plastic strain rate. Its
value depends on the auxiliary "internal" stress a o and on the current value of the "hardness"
0'. through relations given below. The total non-elastic strain rate IE depends immediately on
the auxiliary "effective" stress af through a non-Newtonian viscous relation. For more detailed
discussion of the relations see Ref.[2). We summarize the relations below.

The stress variables are related by

(29)

The variable a represents an internal stored anelastic strain and the strain rate constraint in the
material frame is given by

IE = ci + (da/dt)mal'

since a is a material tensor its fixed frame time variation follows eqn (28) and we have

a=IE - ci + "'(da/dw).

(30)

(31)

We employ the notation of eqn (15) for the tensor invariant and we prescribe, for isotropic
materials, that each mechanism shown in Fig. 2 is separately isotropic in terms of its immediate
variables. Thus

E=(E!O'd)af'

ci =(ci/O'o)ao,

a o =.M.a.

The remaining equations are in terms of the scalar invariants and several functions.

E=a·(O'f/.M.)M,

In (0'·/0'0) =(i·/ci)\

i· =(O'·/G)m . f .exp [-Q/RT),

din O'·/da =nO'·, 0'0)'

(32)

(33)

(34)

(35)

(36)

(37)

(38)

In these equations, G is the modulus of rigidity, Q is an activation energy, R is the gas
constant, T is the absolute temperature, f is an experimental frequency constant, a· is a
function of T, r is an experimental function of its arguments, and .It, M, m, and Aare constants.

Although the relations seem complex, they are in fact rather simple, and in our application
below we shall use an even simpler low temperature limiting form which we have termed the
visco-plastic limit[2).

The important point for our application to the tension-torsion problem is that all the tensor
relations above may be transcribed immediately into the vector representation we have
discussed. We now proceed directly to the formulation of our problem.
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a a

u.

u
E

u,

E
fia. 2. A scbemalic cIiIpam represealiDa the kinelll8lical and mec:haDicaI relations amona the three
eIemeats of Hart's COIIItitutive equations for iDelutic deformation. The conventions of the diagram are
those ClIItoIIIIry in rbeoIoIicaI cIiIpams aad tensor quantities are implied throuJbout. (After Hart, Ref. [I].)

TENSION-TORSION TESTING OF THIN·WALLED CYLINDERS

The testing of tbin-walled cylindrical specimens under combined axial and torsional loading
is substantially equivalent to the superposition of axial loading and transverse shear loading of
plane specimens, and this testing configuration is conveniently treated this way. We propose to
investipte the problem of an imposed shearing rate with a superposed axial stress. We are
interested ia the attendaat uial elongation rate. The axial strain rate is not zero even when the
axial stress is zero(3]. This elect, which can be thought of as second order, is a rather sensitive
test of the multiaxial character of the constitutive relations for the material.

We proceed directly to the case of materials satisfying Hart's[2l constitutive equations. The
equation of importance is eqn (31) which we repeat here in vectorial form,

g := f - g+ w(dgldw).

In components this becomes

~I +2~2 := ~I - ~h 1
a2-2wal =E2- (12,

th=- E)-a).

Since wis equal to the symmetric shear rate E12 we have

.. 1.
w := E12:= V2 E2,

and so

~1 +V(2)~2a2:= ~1- ~h J
a2 - V(2)E2al = E2 - (12,

th= E]-a].

(31)

(39)

(40)

(41)

Our next problem is to find a suitable form for f - g for use in eqn (41). We choose to use only
minimal iaformation from the constitutive equations so that the analysis of experiment can be
as model independent as possible. The tint condition we use is the "normality" condition of
eqn (33), which yields

g =(ti/ua)t[a,

:= (atua)~,

=(ata)g. (42)
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This leads to the equation

~I +v'(2)~2a2 =~.- (~/a)ah ]

a2 - v'(2)E2at = E2 - (a/a)az,

lh =E3 - (a/a)a3'

We may now eliminate Ii from eqn (43) by algebraic reduction to the set

a2al - a~az +~(2)E~a/ ~ az
z
) =aZ~1 - al~z, ]

a3a.- ala] + v'(2)EzaZa3 =a]EI- alE],

aZa] - a]aZ + v'(2)Eza,a] =aZE] - a]Ez.

It is easy to establish the identity

from eqns (29), (32), and (34). Then

ala, - ala] + v'(2)E2aZa] =~(O']EI- O'IE]),

aZa] - a]aZ + v'(2)Ezala] = ~(O'ZE] - O']Ez).
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(43)

(44)

(45)

(46)

We must now make further use of the co~stitutive equations, particularly eqns (29), (32),
and (34). These yield the relation

.M.g =([ - ([[
=([ - (O'~E)~.

(47)

(48)

Since 0'[ is determined entirely as a function of E, we have represented g in terms of measured
variables ([ and ~. At this point we could convert eqn (46) to a set of equations among the
components of ([, ~, and their time derivatives. Those equations would be rather cumbersome.
Since in this paper we are concerned mainly with the problem of axial extension rates
accompanying torsional deformation, and since we shall restrict our considerations to the case
where 0'1\ <C O'IZ, we can introduce a useful simplification in eqn (48).

The strain rate magnitude Eis

. v'(.Z+.Z+'hE= EI Ez E] j, (49)

and, if 0'1\ <C O'IZ, EI and E] will always be much smaller than Ez. Then to a very good
approximation

(50)

Now ([[ is given by the relations

O'[Z =O'f' ]

0'[1 = O'f(~I/~Z)'

0'[3 =O'f(E]/Ez),

(51)
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and, since we shall consider tests for which the imposed shearing rate Ell is constant, it is
convenient to use the quantity E2 dt as a path variable. We define, therefore.

Ej. dE.JdE2 = EI/E2.

E] • dE3/dE2 =E3/f.2.

and the similar relations

ai • daJdE2 =ME2'

O'i· dO'JdE2 =irJE2'

Now the simplified governing equations are

O'a1 =.Mal =0'1- O'tE;, )

O'a2 =.Ma2 =0'2 - O'fo

O'a3 =.Ma3 =0'3 - O'tE],

aDd two independent equations from eqn (46)

a3a; - ala] +V(2)a2a3 = ~(0'3~; - O'IE3), )

a2a] - a3a2 +V(2)ala3 =~(0'2E] - 0'3)'

(52)

(53)

The quantity 0'[ that appears in eqn (52) depends only on E2 and can be treated as a constant to
be determined experimentally in any experiment for which E2 is constant.

TORSION WITH FIXED AXIAL LOAD

A particular case of experimental interest is that for which a thin-walled cylinder is
subjected to a constant torsional deformation rate under a fixed axial load that can be zero. This
corresponds to a constant imposed value for E2, 0'1 and 0'3. During the testing a continuous
recont" of the shear stress 1'12 and of Ell is maintained as a function of E12.

We seek a solution for Ell as it depends on E2' 0'10 0'3, and the measured 'T12. The solution also
depends on the constitutive parameten .It. and O'f. The parameter Jl will be a constant, but the
puameter O'f will tate a value that depends on E2. We restrict our solutions to the non-transient
reaime and so aj and a] can be neglected. Furthermore, since E; and E; are very small
compared to unity we shall neglect terms involving E;2 and E;2.

These approximations lead to the following equations from eqns (52) and (53).

V(2)a2a3 =~ (0'3E;- O'IEJ).

-a3ai +V(2)a,a3 = ~(0'2E] - 0'3),

.Mai = 0'2'

(54)

(55)

(56)

Since the loading is a combination of shear, 1'12. and axial stress. 1'110 the components of the
deviator fT yield the relations

(57)

(58)

(59)
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The vector components for lJ and t relate to the tensor components as follows:

. 1 (. .__\
EI =\72 E1\- Ew,

E2 =V(2)EI2'

E3 =~(~) (E1\ + E22)'

Since it is EII that is measured, we seek the quantity
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(60)

(61)

(62)

(63)

(64)

(65)

(66)

Algebraic reduction of eqns (54)-(56) with the approximations noted above leads to the result

• /. _ V2 (T2 - (Tt (T2 - (Tt +4(TI [1 (T2 - (Tt (T2]
E1\EI2- -- - -,.M (T2 3 (T2 (T2.M

=2TI2- Tt T12- Tt +~ T1\ [1- T12- Ttl. dTI2].

.M TI2 3 TI2 T12 .M dEI2

(67)

(68)

This formula can be made a bit simpler by using the customary notation for tension-torsion
testing. We make the following transcription with the caveat that (T and E below are not to be
comfused with the invariants defined earlier:

The result is now

(T - Tlh

T-TI2,

(69)

(70)

(71)

(72)

(73)

The prominent feature of this result is that it depends on a constant, .At, and on Tb that
depends only on 1'.

KINEMATIC HARDENING

It is instructive to compare the predictions above for Hart's model with those of the
kinematic hardening theory. Although we consider here only the simple time independent
kinematic hardening model, we note that several more sophisticated recent constitutive theories
deal with stored internal stress in a manner analogous to the kinematic hardening theory.
Among those are the models of Miller[4], Robinson[S] and Krieg et 01.[6].

The kinematic hardening model is given here in terms of "strain rates". The rates are
however simply determined byexternally imposed deformation rates or loading rates as is
customary in time independent plasticity. The formal relations for this model are shown
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schematically in Fig. 3 and are detailed immediately below in some analogy to Hart's model
treated above.

In response to deformation the material develops an internal back stress ~ such that the
effective stress ~ that drives the plastic deformation rate g is given by

where ([ is the applied stress as before.
The yield condition is, for

I • +v'(~ , ~),

that

Ii =0 for I < 0'*, I
Ii 7* 0 for I =0'*,

and the normality condition is given by the relation

g =(li/I)~,

where I =0'*. A further requirement is the kinematic relation

and the internal stress lr satisfies the incremental hardening law

(d~/dt)ma, =f . H.

(74)

(75)

(76)

(TI)

(78)

(79)

The hardening parameter H may be functionally dependent on ~. The fixed frame time rate of
change of ~ is then

b· H' ,d b= E+W- .- - dw -

We now detail eqn (80) as follows:

h, +v'(2)E2b2 =HEIt \

h2 - v'(2)E2b, =HE2'

63 =HE).

IT*

ci,1
IT

E
8, E

Fig. 3. Aschematic: diqram repmelltilla the kiaematic:al and mec:huical relations amOlll the deformation
elements for the kinematic: hardening constitutive model.

(80)

(81)
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We seek a "steady state" solution for which 61=63 =0 under the conditions of an imposed
E2. 0'., and 0'3. We divide the equation by E2 as before and employ the same prime notation.
Then

Y(2)b2 =HEI. ]

b~-Y(2)bl =H,

0= HE).

From eqns (77) and (78) we obtain

(82)

(83)

and so, from eqn (82) the condition E) =0 yields

The yield condition is

0'* =Y[(O'l- bl+(0'2- b212+(0'3- b3)2]

=(0'2- b21 ~[1 +(::= ::YJ
=(0'2- b21Y(1 +El~.

Then. from eqn (85),

and the first line of eqn (82) becomes

We expand the square root to second degree in the small quantity El.

By the same reduction to observed variables as before, this becomes

and finally, to a good approximation,

(84)

(85)

(86)

(87)

(88)

(89)

(90)

In this result. T* is the initial yield stress in shear and H is the direct shear strain hardening
given by

H =2(dT/d-y). (91)

DISCUSSION

The result of this computation of the axial extension accompanying torsional deformation of
thin walled cylinders shows the experimental configuration to be a sensitive test of the three
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dimensional form of the inelastic constitutive equations. The principal results for low homolo­
gous temperature testing are contained in eqn (73) for Hart's constitutive equations and eqn (90)
for constitutive equations of the kinematic hardening type. For immediate reference we repeat
these.

dE/d'Y =T"ifT* [ 1+2~ T"if'T*J.

(73)

(90)

The most obvious dift'erence is the lack of explicit dependence on the axial load (1' in the result
for kinematic hardenina. Actually there is some dependence on u for that case throup the
dependence of T on (1'. In eqn (73) .Ji. is explicitly required to be a constant that is an anelastic
modulus of the same order as the shear modulus G. In eqn (90) H need not be a constant
(non-linearity is possible, although most published theories would have H constant), however it
must be close at each slap of deformation to the condition

H =2(dT/d'Y),

since it is the kinematic hardenina rate parameter. It is clear. nevertheless. that there milht be
some ambiguity in fitting the kinematic hardenina prediction to measured results unless some
sharp specification can be made for the rule whereby H is validated. We leave that question for
another paper that deals with the analysis of some explicit experiments. We note. nevertheless,
that at hiah hardenina levels H must vary more slowly and so may be more nearly constant for
sipiftcant ranges of 'Y. It is to be hoped then that in such ranges it may be possible to
discriminate clearly between the two types of theory.

Note specially that the problem has been solved in each case above in terms of the control
parameters ., and (1 aM 01 tlu 'Maund varitJble T. This procedure makes the resultant
prediction of Eless dependent on the detailed form of the constitutive equations. In the case of
Hart's constitutive equations. this makes the test capable of determinina .Ji. and 'Tf with hip
precision.

CONCLUSIONS

A useful new technique for dealing with the tensor variables in multiaxial testing has been
presented. The technique replaces the tensor equations with relations in a three-dimensional
vector space. The elect of material rotations associated with torsional deformation is explicitly
included.

The axial extension accompanyina torsional deformation has been computed for two classes
of inelastic constitutive equations in a form that permits easy comparison with experiment. It is
proposed that a clear distinction can be made between the two types of constitutive theory by
analysis of this phenomenon.
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